

Instruction Manual

 1

Instruction Manual

DS4QB++
Version 1.2
Released March 12, 2002

By Chris Adams (aka Lithium) @ TRINTS Online © 2001-02

 2

Table of Contents

Chapter 1 Introduction 5
Legal Stuff 5
What is DS4QB++? 5
Minimum System Requirements 5
Version Updates 6

Chapter 2 Getting Started 8
How does DS4QB++ work? 8

DS4QB++ Architecture 8
Communication System 8
What sound/music formats does DS4QB++ support? 9

Adding DS4QB++ to your project 10

Adding DS4QB++ to your program 10
Customizing DS4QB++ for your program 11

Starting up and shutting down DS4QB++ 12

Init and Deinit 12
Global Volumes 13

Sound Engine: Basics 13

Looping Sounds 13
Playing, Stopping, etc. 13

Music Engine: Basics 14

Loading Music 14
Playing, Stopping, etc. 15

Chapter 3 Advanced Topics 17
Sound Engine: Advanced Topics 17

Frequency, Panning, Volume, etc. 17
Sound Buffers 18
2D Audio 19

Music Engine: Advanced Topics 20

Pan separation and volume 20
Fading and fade-switching 21
Positions 24

Modifying and compiling DS4QB++ 26

What do I need? 26
Modifying and compiling the slave module 26

 3

Chapter 4 Individual Function Explanations 27
Base Functions 27

DS4QB.Close 27
DS4QB.SetGlobalVolumes 27
DS4QB.SetMusic 27
DS4QB.SetSound 28
DS4QB.SetMasterVolume 28
DS4QB.GetOs% (Function) 28
DS4QB.Init% (Function) 29

Sound Functions 29

DS4QB.DeleteSound 29
DS4QB.LoadSound 30
DS4QB.PlaySound2D 30
DS4QB.PlaySound2DEx 31
DS4QB.PlaySound 31
DS4QB.PlaySoundEx 32
DS4QB.SetSoundAttr 33
DS4QB.StopSound 34

DS4QB.AddSound 34
DS4QB.Add2DSound 35
DS4QB.PlaySounds 35
DS4QB.Play2DSounds 36

Music functions 36

DS4QB.DeleteMusic 36
DS4QB.LoadMusic 36
DS4QB.MusicFadeIn 37
DS4QB.MusicFadeOut 38
DS4QB.MusicFadeSwitch 38
DS4QB.PauseMusic 39
DS4QB.PlayMusic 39
DS4QB.ResumeMusic 40
DS4QB.SetMusicAttr 40
DS4QB.SetMusicPosition 40
DS4QB.StopMusic 41
DS4QB.GetMusicLength& (Function) 41
DS4QB.GetMusicPosition& (Function) 42
Combine& (Function) 42
GetOrder& (Function) 42
GetRow& (Function) 43

CD Audio Functions 43

DS4QB.InitCD 43
DS4QB.DeinitCD 44
DS4QB.PlayCD 44
DS4QB.GetCDTracks (Function) 44

 4

DS4QB.GetCDTrackLength& (Function) 45

Generic 2D Functions 45
DS4QB.Set2DPosition 45
DS4QB.Set2DDistFactor 45

Other Functions 46
RawExtract 46

Closing Words 47
Contact Information 47
Credits 47
Future Plans 47

Appendices 48
Constants 48

Init Flags 48
Sound Flags 48
Music Flags 48
Constants 49
DEFAULT values 49

 5

C H A P T E R 1

Introduction

Legal Stuff

Please read the terms and conditions below. If you do not agree with one or more of
these terms then please do not use DS4QB++!

!"Use at your own risk! I will not be held liable for any damages caused to anything,

by ANY file contained within the main DS4QB++ package, or the utilities
package. Now I highly doubt it will cause any harm to your system. But if it does,
it's probably 'cause you were a lazy ass and forgot to read the docs before you
started :P

!"You may edit ANY of the sourcecode in the library to your liking. However, if you
wish to redistribute it with the modifications you made, please leave DS4QB++
somewhere in the name... For example: DS4QB++ X Edition

!"Please give credit where it is due!

Now that that's over with…

What is DS4QB++?
DS4QB++ is a sound engine for Microsoft QuickBasic 4.5/7.1, which brings the
power of DirectSound/BASS.DLL to the hands of your QB program! DS4QB++ is
fast, easy to use, and has lots of features. DS4QB++ is the third installment in the
"DS4QB" line. The first (DS4QB) was made by nodtviedt and the second (DS4QB2)
was made by Nethergoth.

Minimum System Requirements
!"Microsoft Windows 95

!"Microsoft DirectX 6.1 or higher

!"486DX4/100 MHz

!"16 MB of RAM

!"512 KB of free disk space

!"32-bit disk access /w caching enabled

 6

Version Updates
February 3rd, 2002

!"14 routines added:

DS4QB.PlaySound2D
DS4QB.PlaySound2DEx
DS4QB.AddSound
DS4QB.Add2DSound
DS4QB.PlaySounds
DS4QB.Play2DSounds
DS4QB.InitCD
DS4QB.DeinitCD
DS4QB.PlayCD
DS4QB.Set2DPosition
DS4QB.Set2DDistFactor
DS4QB.GetCDTracks (Function)
DS4QB.GetCDTrackLength& (Function)

RawExtract (Other)

!"1 routine removed:

CrashFix (Debugging tool)

!"2D Audio support (software)

!"Added 2 new example programs:

CDDEMO.BAS
2DDEMO.BAS

!"OGG Vorbis support for music purposes.

!"Made LITE and FULL versions of this library.

!"Sound buffers, to allow the playing of multiple sounds in one master to slave

data transfer.

!"Major bugs fixed; your QB program won't crash anymore if too many sounds

are played at once.

!"Made a nifty little utility manager for all the utilities included with DS4QB++.

!"No more Soundsys.dat. It was causing too many problems on NT/XP

machines; I've replaced it with a subdirectory.

!"RAW file routines for Sound/Music/Maps/Graphics/whatever.

 7

!"The CrashFix subroutine has been flunked in favor of an executable... For

those times when your program crashes but the DS4QB++ slave is still
running.

!"More? Most likely, I fixed/tweaked a lot of things.

August 11th, 2001

!"7 routines added:

 DS4QB.GetMusicPosition& (Function)
DS4QB.GetMusicLength& (Function)
DS4QB.SetMusicPosition
Combine& (Function, for MOD type music)
GetOrder& (Function, for MOD type music)
GetRow& (Function, for MOD type music)

CrashFix (Debugging tool)

!"FULL Mp3 support for music purposes.

!"Changes made to a sound through DS4QB.SetSoundAttr can now be heard

WHILE the sound is playing.

!"DEFAULT can be used in DS4QB.SetSoundAttr and DS4QB.PlaySoundEx
to use the sound's original frequency.

!"Fixed bug in DS4QB.SetMasterVolume and DS4QB.SetGlobalVolumes—

they actually work now!

!"New demo program "QB Mp3 Player".

!"Updated MpTrack. (utilities)

 8

C H A P T E R 2

Getting Started

How does DS4QB++ work?

DS4QB++ Architecture
DS4QB++ is made up of two modules: the master module and the slave module. The
DS4QB++ slave module is a Win32 application written in Visual C++ 6, and the
master module is a DOS16 application written in QuickBasic 4.5.

The master module sends information to the slave module. The slave module then
carries out its task and informs the master module it has done so. For instance, when
you call DS4QB.LoadSound, the master module sends the loading information to the
slave module, which in turn receives the information, loads the sound, and then tells
the master module it is done. All this time the slave module is virtually "invisible",
running in the background.

DOS Windows

QB program

Master module Slave module

BASS.DLL DirectSound

Soundcard

DOS/Windows barrier

Communication System
DS4QB++ has two types of master to slave communication; the method used depends
on the operating system running.

Windows 9x and Millennium (Me)
For Windows 9x/Me, DS4QB++ uses what is called "Swap files /w DMA 0 queuing".
What does this mean? Simple: the master module creates a swap file and in it places
all the information the slave module will need. It then sends a signal through DMA 0.
Meanwhile, the slave module has been waiting for the signal to appear. When it does,

 9

the slave module reads the information from the swap file, carries out the task at
hand, and then clears DMA 0 as a signal to the master module that it is ready for the
next command.

This method is quite fast, and can transmit large amounts of data in no time at all.

Windows NT/2k/XP
Unfortunately the DMA 0 "trick" does not work under these operating systems (for a
number of reasons). So DS4QB++ uses a slightly different method of communication
called "Swap files /w file indicant queuing".

This works in much the same way as the Win9x/Me method, except it uses "file
indicants" for queuing. What does this mean? After writing the packet data to the
swap file, the master module announces the presence of the packet by creating a file.
Meanwhile, the slave module has been waiting for this file to exist. After seeing the
file, the slave module performs its task, and then deletes the indicant file as a sign to
the master module that it has completed its task. This method is not quite as fast as
the Win9X one, but it is still fast, and it gets the job done quite nicely.

What sound/music formats does DS4QB++ support?

For the sound engine:
!".WAV
!".MP1
!".MP2
!".MP3

Huh? Aren't .MP3’s for music?

No, .MP3’s are just compressed .WAV’s, although they have been heavily used for
music purposes. You can compress all your .WAV files into .MP3 files using a
converter I have included. .MP3s are just as good as .WAV’s for your sound effects.
They won't take any more time to play, but will take longer to load (since they are
decompressed at load).

 10

For the music engine:
!".MOD
!".IT
!".XM
!".S3M
!".MTM
!".MO3
!".MP3
!".OGG

What, no .MID for the music engine?!

I have included a program that will convert your .MID files into .MOD, but I will
probably not be adding direct .MID support to DS4QB++, as .MID’s are a dying
breed.

What is an .MO3 file?

An .MO3 file is a .MOD/.IT/.XM/.S3M/.MTM file with MP3 compressed samples,
which can be up to 90% smaller. (Wow!) This is useful if you have .MOD files with
really big samples, or maybe you converted a .MID file to a .MOD, and you want to
make the file as small as it was before you converted it. .MO3 files don't play any
slower than the other music formats; they just take longer to load.

What is an .OGG file?

OGG Vorbis, it's a new sound compression format that seems to have become quite
popular. It offers higher quality and compression rates.

(All these converters can be found in the \UTILS directory.)

Adding DS4QB++ to your project

Adding DS4QB++ to your program
Step 1: Decide which version of DS4QB++ you’re going to use:

LITE Basic sound/music routines only
FULL Everything

 11

Step 2: Copy these files into your project directory:

LIB\(version)\DS4QBPP.BAS Master module
LIB\(version)\DS4QBPP.BI Master module internal header file
LIB\(version)\DEXTERN.BI Master module external header file

(version is the version you selected in step 1)

Step 3: Copy the SOUNDSYS directory into your project directory. Copy the

directory itself, not just the files inside it. If you're not using Ogg Vorbis, then
you can delete the files OGG.DLL and VORBIS.DLL from your SOUNDSYS
subdirectory.

Step 4: Add this line near the start of your main source file:

'$INCLUDE: 'DEXTERN.BI'

Step 5: Load DS4QBPP.BAS as a module in your project:

Customizing DS4QB++ for your program
DS4QB++ comes with a SETUP program for use with your own program. It is a text
mode GUI that allows the user to change the sound options for your program with
ease. However, the setup program does not come compiled—you must configure and
compile it yourself.

To configure the setup program, open SETUP.BAS (which is in the \SETUP directory
you unpacked DS4QB++ into) and find the line which reads:

CONST PROGRAMNAME = "Your program's name here"

Place your program's name between the ""s. So for MyGame you would enter:

 12

CONST PROGRAMNAME = "MyGame"

After doing this, save your new custom SETUP.BAS into your project directory, and
compile it. (You now have your very own custom setup program for your
application). Of course, you can change anything you wish in this program to fit your
needs. You could add a section for the user to select game controls, or network
settings for a network game—or maybe just change the colors/look of the windows.
But be warned: This is very crappy coding! (VERY).

Starting up and shutting down DS4QB++

Init and Deinit
The very first thing you must do before calling any DS4QB++ routines is initialize
DS4QB++. This can be done by calling DS4QB.Init:

' Initialize DS4QB++ using the sound quality specified in
SOUNDSYS.CFG,
' and using the default initialization flags
Result = DS4QB.Init(CURRENT, DEFAULT)

or maybe:

' Initialize DS4QB++ with high sound quality, and use the default
' initialization flags
Result = DS4QB.Init(HIGHQUALITY, DEFAULT)

If DS4QB.Init returns a non-zero value, there was an error. The error codes are as
follows:

Error code Description

-1 A critical file is missing from the SOUNDSYS directory

(DS4QBXX.EXE, BASS.DLL, START.EXE, or
VORBIS.DLL/OGG.DLL if you used the INIT.OGGENABLE flag)

-2 Could not connect to slave. This could be a result of an error occurring
while the slave was attempting to initialize your soundcard.

-3 Configuration file (SOUNDSYS.CFG) is missing. This could be
because SETUP.EXE has not been executed successfully.

The very last thing you must do (usually before your program terminates) is
deinitialize DS4QB++. This will tell the slave module to shutdown and delete any
excess files created by DS4QB++ while the program was operating. This is done by
one call to DS4QB.Close:

 13

' Deinitialize DS4QB++
DS4QB.Close

Global Volumes

Although it is not necessary to set global volumes, it can be very helpful for many
things. There are two commands that can be used to alter these global volumes:

DS4QB.SetMasterVolume Sets the master volume, which is a percentage over all

the other volumes. 50 (default) is 100%, 100 is 200%,
25 is 50%, etc.

' Sets the master volume to 200%
DS4QB.SetMasterVolume 100

DS4QB.SetGlobalVolumes Sets the individual global volumes over the different

devices (sound and music). 50 is the default for both.

' Set sound volume to 150%, and leave the music volume at what
' it is now.
DS4QB.SetGlobalVolumes 75, CURRENT

Sound Engine: Basics

Loading Sounds
DS4QB++ can have up to 1024 sounds loaded at a time, which can all be playing
simultaneously a maximum of 10 times each. But before we play any sounds we must
load them. This can be done with DS4QB.LoadSound:

 ' Load MySound.Wav in to sound slot 1, using the default sound flags
 DS4QB.LoadSound 1, "MySound.Wav", DEFAULT

Note There are no error messages. If the sound was not loaded correctly you just
won't hear any sound when you play it.

Playing, Stopping, etc.
Some of DS4QB++'s sound handling routines include:

DS4QB.PlaySound Play a sound
DS4QB.StopSound Stop a sound from playing
DS4QB.DeleteSound Delete a sound from memory

 14

Here is a small program that shows how to use all these routines:

' This program demonstrates the basic DS4QB++ sound routines
DEFINT A-Z

'$INCLUDE: 'DEXTERN.BI'

' Initialize DS4QB++
IF DS4QB.Init(CURRENT, DEFAULT)) THEN
 PRINT "Error! Could not initialize DS4QB++!"
 END
END IF

' Load MyWav.Wav into slot 1
DS4QB.LoadSound 1, "MyWav.Wav", DEFAULT

DO
 Inpt$ = UCASE$(INPUT$(1))
 SELECT CASE Inpt$
 CASE "P"
 ' Play sound at slot 1
 DS4QB.PlaySound 1
 CASE "S"
 ' Stop sound at slot 1. If no sound is
 ' playing, nothing will happen
 DS4QB.StopSound 1
 CASE "D"
 ' Delete sound at slot 1, oops!
 DS4QB.DeleteSound 1
 PRINT "Oops!"
 CASE CHR$(27)
 EXIT DO
 END SELECT
LOOP

' Deinitialize DS4QB++
DS4QB.Close

END

Music Engine: Basics

Loading Music
DS4QB++ can have a maximum of 512 musical pieces loaded at any given time,
which can all be playing at the same time. At the moment, DS4QB++ supports .MOD
.MO3 .IT .XM .S3M .MTM .OGG and .MP3 music types. Loading a musical piece
can be done with DS4QB.LoadMusic, like this:

' Load MyMusic.Mod into music slot 1, with the default music flags.
DS4QB.LoadMusic 1, "MyMusic.Mod", DEFAULT

 15

Playing, Stopping, etc.
The basic music handling routines are as follows:

DS4QB.PlayMusic Play a musical piece
DS4QB.StopMusic Stop a musical piece from playing
DS4QB.PauseMusic Pause a musical piece in mid-play
DS4QB.ResumeMusic Resume a musical piece from pause status
DS4QB.DeleteMusic Delete a musical piece from the memory

Here is an example demonstrating DS4QB++'s basic music routines:

' This program demonstrates the basic DS4QB++ music routines
DEFINT A-Z

'$INCLUDE: 'DEXTERN.BI'

' Initialize DS4QB++
IF DS4QB.Init(CURRENT, DEFAULT)) THEN
 PRINT "Error! Could not initialize DS4QB++!"
 END
END IF

' Load MyMusic.Mod into slot 1
DS4QB.LoadMusic 1, "MyMusic.Mod", DEFAULT

' Play music at slot 1, NOTE: By default musical pieces are
' automatically looped (When the music finishes playing it starts
' over and plays from the start)
DS4QB.PlayMusic 1

DO
 Inpt$ = UCASE$(INPUT$(1))
 SELECT CASE Inpt$
 CASE "P"
 ' Play music at slot 1
 DS4QB.PlayMusic 1
 CASE "A"
 ' Pause music at slot 1. If no music
 ' is playing, nothing will happen
 DS4QB.PauseMusic 1
 CASE "R"
 ' Resume a paused musical piece at slot 1, nothing will happen
 ' if no music has been paused
 DS4QB.ResumeMusic 1
 CASE "S"
 ' Stop music at slot 1. If no music
 ' is playing, nothing will happen
 DS4QB.StopMusic 1
 CASE "D"
 ' Delete music at slot 1, oops!
 DS4QB.DeleteMusic 1
 PRINT "Oops!"
 CASE CHR$(27)
 EXIT DO
 END SELECT

 16
LOOP

' Deinitialize DS4QB++
DS4QB.Close

END

 17

C H A P T E R 3

Advanced Topics

Sound Engine: Advanced Topics

Frequency, Panning, Volume, etc.
What are they? First of all, the frequency is the rate at which the sound plays. If a
sound was recorded at 22 KHz, then when it is played you will hear 22,050 vibrations
per a second. The higher the frequency, the better quality the sound…right? Well, that
depends. As long as the sound was initially recorded at that rate, it will sound fine.
But if a sound was recorded at 22 KHz and then played at 44 KHz, it will play twice
as fast as it should! (And vice versa.)

So what is changing the frequency good for? It can be handy for many of different
things: one sound played at different frequencies could become 2 sounds, or more!
(This could be useful for simulating a car engine.)

So how do I play a sound at a different frequency? Easy, using the
DS4QB.PlaySoundEx routine:

' Play sound at slot one, on using a random frequency between 100Hz
' and 44,100Hz, using the current values for volume, panning, and
' looping
DS4QB.PlaySoundEx 1, INT(RND * 44000) + 100, CURRENT, CURRENT, _
CURRENT

Of course, DS4QB.PlaySoundEx can do more than play a sound at a different
frequency. It can also play a sound with different panning settings, or at a different
level of volume, or with a different looping flag.

Panning is quite simple. It is the position from left to right on your speakers. 0 is
centered (and default), -100 is completely to the left, and 100 is completely to the
right.

' Play sound at slot one, using the current frequency for that sound
' effect, a random panning setting from -100 to 100, and using the
' current settings for volume and looping
DS4QB.PlaySoundEx 1, CURRENT, INT(RND * 200) - 100, CURRENT, CURRENT

DS4QB.PlaySoundEx can also play your sounds with different volumes. 0 is off, 50
is default, and 100 is full volume.

' Play sound at slot one, using current frequency, panning, and
' looping settings, with random volume between 0 and 100
DS4QB.PlaySoundEx 1, CURRENT, CURRENT, INT(RND * 101), CURRENT

And last but not least, you can play your sound with a different looping setting.
ACTIVE is looping, DEACTIVE (default) is non-looping. When a sound is played

 18

with the looping setting on, the sound will continue to loop until either the sound is
stopped (using DS4QB.StopSound) or DS4QB++ is deinitialized.

' Play a sound using the current settings for frequency, panning,
' and volume. Activate looping
DS4QB.PlaySoundEx 1, CURRENT, CURRENT, CURRENT, ACTIVE
' Wait for user to press a key
WHILE INKEY$ <> "": WEND

DS4QB.PlaySoundEx is very useful, and is just as fast as DS4QB.PlaySound. But
what if I want to change any of these CURRENT settings? You can change any of
these CURRENT settings using DS4QB.SetSoundAttr:

' Set attributes for sound slot one, don't change the frequency, set
' volume to 100, panning to 50% to the left, don't change the
' looping flag, and change the sound flags so the sound plays at
' 8-bit/sample
DS4QB.SetSoundAttr 1, CURRENT, 100, -50, CURRENT, SND.8BIT

To set the attributes to default:

' Restore the default settings for volume, panning, looping, and
' flags
DS4QB.SetSoundAttr 1, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT

Note Setting DEFAULT for frequency will restore it to what it was when the sound
was loaded.

Sound Buffers
Q. What is a sound buffer?
A. Very useful ;]

Sound buffers are VERY useful. DS4QB++ can play from 30 to 50 sounds/second;
now let's say you want to be able to play more than 50 sounds/second. No problem,
just use sound buffers! Basically, they allow you to play multiple sounds in one
master to slave transaction.

For example, to add a sound to the sound buffer:

' Add sound 1 to the regular sound buffer, using CURRENT settings
' for the frequency, volume, panning, and looping.
DS4QB.AddSound 1, CURRENT, CURRENT, CURRENT, CURRENT

I could add another sound if I wanted:

' Add sound 3 to the regular sound buffer, using 10,000 for the
' frequency, 50 for the volume, and CURRENT settings for the panning
' and looping.
DS4QB.AddSound 3, 10000, 50, CURRENT, CURRENT

 19

I could add another 62 sounds to this buffer... But I won't. These sounds will not be
played until DS4QB.PlaySounds is called. After the sounds are played, the buffer
will be cleared. There is also a sound buffer for 2D sounds, which is explained in the
next section.

2D Audio

First off, what is 2D Audio? Well, simply put, the volume and pan position of a sound
are altered to simulate distance, position, and orientation from the perception (ear)
point, on a 2D plane. The 2D audio will work on any system that normal sound
routines work on.

The only thing you really need to do before using the 2D audio routines is set the
distance factor. Distance what? Basically, the 2D audio routines determine the
volume of the sound using this formula:

v = c / d2

or

Volume = OriginalVolume / (Distance * Distance)

Volume and OriginalVolume are pretty self explanatory, Distance also; it's the
distance from the point of perception (the ear of the listener)... Anyway, most of you
are probably using pixels as the unit of measure for distance, so if the original volume
is at 100, and the distance is 10 pixels from the P.O.P:

 = 100 / 102
 = 100 / 100
 = 1

1 volume is almost silent, that's not good :]. This is where the distance factor comes
in handy, and the DS4QB.Set2DDistanceFactor routine. Let's say we set the
distance factor to 64, and we're playing a sound from 10 pixels away, with the initial
volume of 100:

 = 100 / (102 / 64)
 = 100 / (100 / 64)
 = 64

Much better, no?

' Set the 2D distance factor to 64 (the DEFAULT setting)
DS4QB.Set2DDistanceFactor 64

There are two methods you can use to play sounds in 2D; the first is to play the
sounds individually. The second is to use the 2D sound buffer, which is the preferred.

 20

When playing sounds individually, you must first set the position and orientation of
the ear, with DS4QB.Set2DPosition.

' Set the position of the ear to (10, 10), at an angle of 90 degrees
DS4QB.Set2DPosition 10, 10, 90

And DS4QB.PlaySound2D or DS4QB.PlaySound2DEx to play a sound:

' Play sound 1, at coordinates (0, 20), angle, using CURRENT values
' for the frequency and volume
DS4QB.PlaySound2DEx 1, 0, 20, 270, CURRENT, CURRENT

Although the option to play the sounds individually is given, it is not advised. It is a
much better idea to use the 2D sound buffer, as you can play all your sounds for each
frame at the same time and set the position/orientation of the ear all in one master to
slave communication. A lot faster than doing it individually.

Simply add a sound to the sound buffer

' Add sound #1 to the 2D sound buffer, position (30, 50), angle 180,
' etc..
DS4QB.Add2DSound 1, 30, 50, 180, CURRENT, CURRENT

And maybe another (up to 60 2D sounds can be queued in the buffer)...

' Add another sound...
DS4QB.Add2DSound 2, 100, 20, 45, CURRENT, 50

Finally, play all the sounds at once using DS4QB.Play2DSounds

' Play all sounds in the 2D sound buffer, at position (10, 10),
' angle 90.
DS4QB.Play2DSounds 10, 10, 90

For a better example on this topic, check out DEMO\2DDEMO.BAS

Music Engine: Advanced Topics

Pan Separation and Volume

DS4QB++'s music engine has a variety of neat features, all of which can be executed
with the same speed as DS4QB++'s sound routines!

First off is pan separation. This is how far your musical piece is spread out on your
stereo speakers.

 21

Your Stereo Speakers

Left Right0

(Pan separation at 50%)
Music will be played between these points.

By default, the pan separation is set to 50%, but if you want a full spread, you can set
it to 100% (sounds cool!) This can be done by calling DS4QB.SetMusicAttr:

' Set music attributes on slot one, with 100% pan separation, and
' current volume settings
DS4QB.SetMusicAttr 1, 100, CURRENT

Setting the volume is just as easy. By default the volume is 50, but you can set it
using DS4QB.SetMusicAttr:

' Set music attributes on slot one, leave pan separation at what it
' is, and set volume to 25
DS4QB.SetMusicAttr 1, CURRENT, 25

Note You can call DS4QB.SetMusicAttr while the musical piece is playing.
However, if you want to set a musical piece's attributes to something other than the
default, it's a good idea to call DS4QB.SetMusicAttr before you call
DS4QB.PlayMusic! For example:

' This code is bad! The user will hear the music being played at the
' default volume for a split second, and then hear it go up
DS4QB.PlayMusic 1
DS4QB.SetMusicAttr 1, 100, CURRENT

' This is better
DS4QB.SetMusicAttr 1, 100, CURRENT
DS4QB.PlayMusic 1

Fading and Fade-Switching
Fading and fade-switching are probably some of the coolest routines DS4QB++'s
music engine has!

Fading is the process of gradually changing the volume from one level to another.
DS4QB++ has three routines for this:

 22

DS4QB.MusicFadeIn Starts a musical piece playing at null volume, and then

gradually increases the volume until it has reached the
required volume level.

Start

Finish

(music not playing)

(required volume reached)
(music is playing)

DS4QB.MusicFadeOut Fades a musical piece until it has reached null volume.

Once it has, the music will stop playing.

Finish

Start

(music is stopped)
(null volume reached)

(music is playing)

Here is an example program that demonstrates the usage of both of these routines:

' This program demonstrates the usage of DS4QB.MusicFadeIn and
' DS4QB.MusicFadeOut
DEFINT A-Z

'$INCLUDE: 'DEXTERN.BI'

' Initialize DS4QB++
IF DS4QB.Init(CURRENT, DEFAULT)) THEN
 PRINT "Error! Could not initialize DS4QB++!"
 END
END IF

' Load MyMusic.Mod into slot 1
DS4QB.LoadMusic 1, "MyMusic.Mod", DEFAULT

' Start the fade in process for music slot 1, set the amount of
' volume to be increased/per a cycle to 5, and the volume that has
' to be achieved to 50.
' NOTE: FadeTemp is the variable that is used to track the progress
' of the fade. We call DS4QB.MusicFadeIn once in order to start the
' process, then we put it in the loop bellow to continue the process

DS4QB.MusicFadeIn 5, 1, 50, FadeTemp

' ALSO NOTE: The values 5 and 50 for the fade step and objective

 23
' volume are default, I could have just written:
'
' DS4QB.MusicFadeIn DEFAULT, 1, DEFAULT, FadeTemp
'
' Sometimes it is best to use DEFAULT for attributes that can use
' it. (if you're not sure what to put, or you just want to keep
' things consistent)

DO
 ' Continue the process. I bet you're wondering, why do we need to
 ' do all this? It's simple; this way you can be doing other things
 ' while waiting for the music to fade in/out.
 DS4QB.MusicFadeIn DEFAULT, 1, DEFAULT, FadeTemp
 ' We know the fade process is over when FadeTemp is equal to zero
LOOP WHILE FadeTemp

' Prompt user and wait for a keypress
PRINT "Press any key to stop."
G$ = INPUT$(1)

' Initiate the fade out process for music slot 1, using the default
' settings for the fade-step and current volume. (The current volume
' is the volume that the musical piece you are fading out from is
' at, this is needed because retrieving the current volume from the
' slave module would take too much time.)
DS4QB.MusicFadeOut DEFAULT, 1, DEFAULT, FadeTemp

DO
 ' Continue the fade out process
 DS4QB.MusicFadeOut DEFAULT, 1, DEFAULT, FadeTemp
 ' Wait until the process is finished
LOOP WHILE FadeTemp

' Deinitialize DS4QB++
DS4QB.Close

END

Of course, DS4QB++ can do more than just fade music in and out. What if you
wanted to switch music? DS4QB++ has a neat little routine to do that for you:
DS4QB.MusicFadeSwitch. This routine works like DS4QB.MusicFadeIn and
DS4QB.MusicFadeOut, except you have two musical pieces, the first one is one that
is already playing, the second one is one that will be playing when the routine is
finished switching.

Finish

Start

(music 1 is stopped)

(music 1 already playing)

Start

Finish

(music 2 is not playing)

(music 2 has reached
required volume)

The neat thing about this routine is that you can seamlessly switch musical pieces,
and have other stuff going on while it is doing so! Here is an example program for
DS4QB.MusicFadeSwitch:

 24

' This program demonstrates the usage of DS4QB.MusicFadeSwitch
DEFINT A-Z

'$INCLUDE: 'DEXTERN.BI'

' Initialize DS4QB++
IF DS4QB.Init(CURRENT, DEFAULT)) THEN
 PRINT "Error! Could not initialize DS4QB++!"
 END
END IF

' Load MyMusic.Mod into slot 1
DS4QB.LoadMusic 1, "MyMusic.Mod", DEFAULT
' Load MyMusic2.Mod into slot 2
DS4QB.LoadMusic 1, "MyMusic2.Mod", DEFAULT

' Start music at slot 1 playing
DS4QB.PlayMusic 1

PRINT "Press any key to switch the music."
G$ = INPUT$(1)

' Start the fade switch process, using the default settings for
' fade-step and object volume. NOTE: In this routine the objective
' volume is the volume at which the music you are switching to will
' end up as, and the current volume of the music you are switching
' from
DS4QB.MusicFadeSwitch DEFAULT, 1, DEFAULT, 2, FadeTemp

DO
 ' Continue fade switching the musics, using the same options as
 ' before
 DS4QB.MusicFadeSwitch DEFAULT, 1, DEFAULT, 2, FadeTemp
 ' Wait for fade switch process to finish
LOOP WHILE FadeTemp

' Prompt user and wait for a keypress
PRINT "Press any key to stop."
G$ = INPUT$(1)

' Deinitialize DS4QB++
DS4QB.Close

END

If you need more examples on these routines, the DS4QB++ demo program is a great
source. If you downloaded the demo, the source code can be found in the
\DEMO\SOURCE directory.

Positions
With DS4QB++, you can get/set the position of a musical piece at any time. The
same routines are used for both MOD and Mp3 type music, but the processes are
different. MOD type music uses "orders" and "rows", Mp3 type music uses position
in bytes.

 25

DS4QB++ has 3 universal routines for positions (music):

DS4QB.SetMusicPosition Sets position
DS4QB.GetMusicPosition& (Function) Retrieves position
DS4QB.GetMusicLength& (Function) Retrieves length

And 3 other routines specifically for MOD type music:

Combine& (Function) Combines order/row into a LONG.
GetOrder& (Function) Gets order from a LONG.
GetRow& (Function) Gets row from a LONG.

To retrieve the length (in bytes) of an Mp3 type music:
' Retrieve the length in bytes, of the Mp3 music in slot 1
Length& = DS4QB.GetMusicLength&(1)

To retrieve the position (in bytes) of a playing Mp3 type music:

' Retrieve the position (in bytes) of the Mp3 music in slot 1
Position& = DS4QB.GetMusicPosition&(1)

Let's say you wanted to find out what percentage of the Mp3 has played. You can do
it this way:

' Retrieve the percentage of the Mp3 music that has been played
Percent = (100 / DS4QB.GetMusicLength&(1)) *
DS4QB.GetMusicPosition&(1)

You can also set the position using DS4QB.SetMusicPosition, like this:

' Retrieve length
Length& = DS4QB.GetMusicLength&(1)

' Randomly set the music's position at slot one
DS4QB.SetMusicPosition 1, INT(RND * Length&)

Doing the above is a little more complicated with MOD type music, due to their
formatting, but not really much harder.

' Retrieve the length of the MOD music at slot one
Length& = DS4QB.GetMusicLength&(1)

' Convert the length into order/row
Order = GetOrder&(Length&)
Row = GetRow&(Length&)

That will give you the last order and row that a note is played on; retrieving position
is very similar:

' Retrieve the current position of the MOD music playing at slot one
Position& = DS4QB.GetMusicPosition&(1)

' Convert the position into order/row

 26
Order = GetOrder&(Position&)
Row = GetRow&(Position&)

And setting the position:

' Set the position of the music playing at slot one to 4 : 10 (Order
: Row)
DS4QB.SetMusicPosition 1, Combine&(4, 10)

Note: With Mp3 type music, I have noticed that with some .MP3's you cannot set the
position too far off from what it is currently playing at—or it will reset itself. This is a
bug/issue with BASS.DLL, so please, complain to Ian Luck at
http://www.un4seen.com :]

If you would like a better example on this topic, check out MP3PLAY.BAS, in the
\DEMO\SOURCE directory.

Modifying and Compiling DS4QB++

What do I need?
For the master module you need Microsoft QuickBasic 4.5 or 7.1. For the slave
module you need Microsoft Visual C++ 6.0 or better, the Microsoft DirectX 6.1 SDK
or better, and finally BASS Library v1.3 available at http://www.un4seen.com.

Modifying and compiling the slave module
To open up the DS4QB++ slave module workspace, just double click
DS4QBXX.DSW in the \SOURCE directory. After compiling, copy DS4QBXX.EXE
into your \SOUNDSYS directory and you're all ready to go.

http://www.un4seen.com/
http://www.un4seen.com/

 27

C H A P T E R 4

Individual Function Explanations

Base Functions

DS4QB.Close

Prototype DECLARE SUB DS4QB.Close ()

Parameters None.

Definition Shuts down and closes out DS4QB++.

Comments Call this just before your program terminates.

DS4QB.SetGlobalVolumes

Prototype DECLARE SUB DS4QB.SetGlobalVolumes (SoundVol AS INTEGER, MusicVol AS

INTEGER)

Parameters SoundVol – Global sound volume.

 DEFAULT Uses the default setting. (50)
 CURRENT Uses the current setting.
 Integer 0 – 100 Volume level.

 MusicVol – Global music volume.

 DEFAULT Uses the default setting. (50)
 CURRENT Uses the current setting.
 Integer 0 – 100 Volume level.

Definition Sets the global volumes for sound and music.

Comments None.

DS4QB.SetMusic

Prototype DECLARE SUB DS4QB.SetMusic (Switch AS INTEGER)

 28

Parameters Switch – Music on/off indicant.

 ACTIVE Turns music on.
 DEACTIVE Turns music off.

Definition Turns music on or off.

Comments If music is turned off, calls to DS4QB.PlayMusic will be ignored.

DS4QB.SetSound

Prototype DECLARE SUB DS4QB.SetSound (Switch AS INTEGER)

Parameters Switch – Sound on/off indicant.

 ACTIVE Turns sound on.
 DEACTIVE Turns sound off.

Definition Turns sound on or off.

Comments If sound is turned off, calls to DS4QB.PlaySound and DS4QB.PlaySoundEx will be

ignored.

DS4QB.SetMasterVolume

Prototype DECLARE SUB DS4QB.SetMasterVolume (Volume AS INTEGER)

Parameters Volume – Master volume level.

 DEFAULT Default setting is used. (50)
 Integer 0 – 100 Volume level.

Definition Sets the master volume (volume of everything).

Comments None.

DS4QB.GetOS% (Function)

Prototype DECLARE FUNCTION DS4QB.GetOs% ()

Parameters None.

 29

Returns WIN9X – User has selected Windows 95, 98, or Me in SETUP.EXE.
 WINNT – User has selected Windows NT, 2K, or XP in SETUP.EXE.

Definition Retrieves the operating system class selected by the user in SETUP.EXE.

Comments None.

DS4QB.Init% (Function)

Prototype DECLARE FUNCTION DS4QB.Init% ()

Parameters SoundQuality – The sound quality that your sound/music will play at.

 DEFAULT Use the default setting. (MEDIUMQUALITY)
 CURRENT Use the setting selected by the user in SETUP.EXE.
 HIGHQUALITY High playback quality.
 MEDIUMQUALITY Medium playback quality.
 LOWQUALITY Low playback quality.

 Flags – Initialization options for DS4QB++ to use.

 DEFAULT Use the default settings.
 INIT.8BIT Use 8-bit mixing for all sound/music/etc.
 INIT.MONO Use mono mixing for all sound/music/etc.
 (These settings can be combined using the OR operand.)

Returns Non-zero value indicates an error; look in the “Getting started: Starting up and

shutting down DS4QB++” section for the list of error codes/meanings.

Definition Initializes DS4QB++.

Comments This routine must be called before any other DS4QB++ routines!

Sound Functions

DS4QB.DeleteSound

Prototype DECLARE SUB DS4QB.DeleteSound (Slot AS INTEGER)

Parameters Slot – Sound slot you wish to delete.

 Integer 1 – 1024 Sound slot.

 30

Definition Deletes a sound.

Comments This will do nothing if no sound is loaded in this slot.

DS4QB.LoadSound

Prototype DECLARE SUB DS4QB.LoadSound (Slot AS INTEGER, FileName AS STRING,

Flags AS LONG)

Parameters Slot – Sound slot that you wish to load the sound into.

 Integer 1 – 1024 Sound slot.

 FileName – File name of the sound you wish to load.

 String FileName.

 Flags – Options for the sound you are loading.

 DEFAULT Use the default sound options. (NULL)

 (These settings can be combined using the OR operand.)
 SND.8BIT Sound will play using 8-bit instead of 16-bit.
 SND.MONO Sound will play using mono instead of stereo.
 SND.LOOPING Looping flag initially set.
 SND.SOFTWARE Use software mixing instead of hardware.

Definition Loads a sound, from a file into the desired slot.

Comments Loads WAV/MP1/MP2/MP3 files only. FileName can be a maximum of 64

characters in length.

DS4QB.PlaySound2D

Prototype DECLARE SUB DS4QB.PlaySound (Slot AS INTEGER, X AS INTEGER, Y AS

INTEGER, Angle AS INTEGER)

Parameters Slot – Sound slot you wish to play.

 Integer 1 – 1024 Sound slot.

 X, Y – Location of sound to be played.

 Integer ? – ? Sound position.

 31

 Angle – Angle in which sound is facing.

 Integer 0 – 359 Sound orientation.

Definition Plays a sound with 2D audio.

Comments Will do nothing if no sound has been loaded in this slot.

DS4QB.PlaySound2DEx

Prototype DECLARE SUB DS4QB.PlaySound (Slot AS INTEGER, X AS INTEGER, Y AS

INTEGER, Angle AS INTEGER, Freq AS INTEGER, Volume AS INTEGER)

Parameters Slot – Sound slot you wish to play.

 Integer 1 – 1024 Sound slot.

 X, Y – Location of sound to be played.

 Integer ? – ? Sound position.

 Angle – Angle in which sound is facing.

 Integer 0 – 359 Sound orientation.

 Freq – Frequency to play the sound at.

 CURRENT Use current setting.
 DEFAULT Use original setting.
 Long integer 100 – 100,000 Frequency.

 Volume – Volume to play the sound at.

 CURRENT Use current setting.
 DEFAULT Use the default setting. (50)
 Integer 0 – 100 Volume level.

Definition Plays a sound with 2D audio, extra options.

Comments Will do nothing if no sound has been loaded in this slot.

DS4QB.PlaySound

Prototype DECLARE SUB DS4QB.PlaySound (Slot AS INTEGER)

 32

Parameters Slot – Sound slot you wish to play.

 Integer 1 – 1024 Sound slot.

Definition Plays a sound.

Comments Will do nothing if no sound has been loaded in this slot.

DS4QB.PlaySoundEx

Prototype DECLARE SUB DS4QB.PlaySoundEx (Slot AS INTEGER, Freq AS LONG, Volume

AS INTEGER, Pan AS INTEGER, Looping AS INTEGER)

Parameters Slot – Sound slot you wish to play.

 Integer 1 – 1024 Sound slot.

 Freq – Frequency to play the sound at.

 CURRENT Use current setting.
 DEFAULT Use original setting.
 Long integer 100 – 100,000 Frequency.

 Volume – Volume to play the sound at.

 CURRENT Use current setting.
 DEFAULT Use the default setting. (50)
 Integer 0 – 100 Volume level.

 Pan – Panning position to play the sound at.

 CURRENT Use current setting.
 DEFAULT Use the default setting. (0)
 Integer -100 – 100 Panning position.

 Looping – Looping flag.

 CURRENT Use current setting.
 DEFAULT Use the default setting. (DEACTIVE)
 ACTIVE Turn looping on.
 DEACTIVE Turn looping off.

Definition Plays a sound, with extra functionality.

Comments Will do nothing if no sound has been loaded in this slot.

 33

DS4QB.SetSoundAttr

Prototype DECLARE SUB DS4QB.SetSoundAttr (Slot AS INTEGER, Freq AS LONG,

Volume AS INTEGER, Pan AS INTEGER, Looping AS INTEGER, Flags AS
LONG)

Parameters Slot – Sound slot you wish to set these attributes on.

 Integer 1 – 1024 Sound slot.

 Freq – Frequency to set as current

 CURRENT Use current setting.
 DEFAULT Use original setting.
 Long integer 100 – 100,000 Frequency.

 Volume – Volume level to set as current

 CURRENT Use current setting.
 DEFAULT Use the default setting. (50)
 Integer 0 – 100 Volume level.

 Pan – Panning position to set as current.

 CURRENT Use current setting.
 DEFAULT Use the default setting. (0)
 Integer -100 – 100 Panning position.

 Looping – Looping flag to set as current.

 CURRENT Use current setting.
 DEFAULT Use the default setting. (DEACTIVE)
 ACTIVE Turn looping on.
 DEACTIVE Turn looping off.

 Flags – Flags to set as current.

 CURRENT Use current settings.
 DEFAULT Use default settings. (NULL)

 (These options can be combined using the OR operand.)
 SND.8BIT Use 8-bit, instead of 16-bit.
 SND.MONO Use mono, instead of stereo.
 SND.SOFTWARE Use software for mixing, instead of hardware.

Definition Sets a sound's CURRENT attributes.

Comments None.

 34

DS4QB.StopSound

Prototype DECLARE SUB DS4QB.StopSound (Slot AS INTEGER)

Parameters Slot – Sound slot you wish to stop from playing.

 Integer 1 – 1024 Sound slot.

Definition Deletes a sound.

Comments Nothing will happen if no sound is playing on this slot.

DS4QB.AddSound

Prototype DECLARE SUB DS4QB.AddSound (Slot AS INTEGER, Freq AS LONG, Volume AS

INTEGER, Pan AS INTEGER, Looping AS INTEGER)

Parameters Slot – Sound slot you wish to play.

 Integer 1 – 1024 Sound slot.

 Freq – Frequency to play the sound at.

 CURRENT Use current setting.
 DEFAULT Use original setting.
 Long integer 100 – 100,000 Frequency.

 Volume – Volume to play the sound at.

 CURRENT Use current setting.
 DEFAULT Use the default setting. (50)
 Integer 0 – 100 Volume level.

 Pan – Panning position to play the sound at.

 CURRENT Use current setting.
 DEFAULT Use the default setting. (0)
 Integer -100 – 100 Panning position.

 Looping – Looping flag.

 CURRENT Use current setting.
 DEFAULT Use the default setting. (DEACTIVE)
 ACTIVE Turn looping on.
 DEACTIVE Turn looping off.

 35

Definition Adds a sound to the sound buffer.

Comments The regular sound buffer can hold no more than 64 sounds.

DS4QB.Add2DSound

Prototype DECLARE SUB DS4QB.Add2DSound (Slot AS INTEGER, PosX AS INTEGER, PosY

AS INTEGER, Angle AS INTEGER, Freq AS LONG, Volume AS INTEGER)

Parameters Slot – Sound slot you wish to play.

 Integer 1 – 1024 Sound slot.

 PosX, PosY – Location of sound to be played.

 Integer Sound position.

 Angle – Angle in which sound is facing.

 Integer 0 – 359 Sound orientation.

 Freq – Frequency to play the sound at.

 CURRENT Use current setting.
 DEFAULT Use original setting.
 Long integer 100 – 100,000 Frequency.

 Volume – Volume to play the sound at.

 CURRENT Use current setting.
 DEFAULT Use the default setting. (50)
 Integer 0 – 100 Volume level.

Definition Adds a 2D sound to the 2D sound buffer.

Comments The 2D sound buffer can hold no more than 60 sounds.

DS4QB.PlaySounds

Prototype DECLARE SUB DS4QB.PlaySounds ()

Parameters None

Definition Plays all sounds in the regular sound buffer, and then clears it.

 36

Comments Will do nothing if no sounds are in buffer.

DS4QB.Play2DSounds

Prototype DECLARE SUB DS4QB.Play2DSounds (PosX AS INTEGER, PosY AS INTEGER,

Angle AS INTEGER)

Parameters PosX, PosY – Location of the ear.

 Integer ? – ? Sound position.
 CURRENT CURRENT values.

 Angle – Angle in which the ear is facing.

 Integer 0 – 359 Sound orientation.
 CURRENT CURRENT value.

Definition Plays all sounds in the 2D sound buffer, and then clears it.

Comments Will do nothing if no sounds are in buffer.

Music Functions

DS4QB.DeleteMusic

Prototype DECLARE SUB DS4QB.DeleteMusic (Slot AS INTEGER)

Parameters Slot – Music slot you wish to delete.

 Integer 1 – 512 Music slot.

Definition Deletes a music slot.

Comments This will do nothing if no sound is loaded in this slot.

DS4QB.LoadMusic

Prototype DECLARE SUB DS4QB.LoadMusic (Slot AS INTEGER, FileName AS STRING,

Flags AS LONG)

 37

Parameters Slot – Music slot that you wish to load the music into.

 Integer 1 – 512 Music slot.

 FileName – File name of the music you wish to load.

 String FileName.

 Flags – Options for the music you are loading.

 DEFAULT Use the default music options. (MUS.LOOPING)

 (These settings can be combined using the OR operand).
 MUS.8BIT Music will play using 8-bit instead of 16-bit. *
 MUS.MONO Music will play using mono instead of stereo. *
 MUS.SOFTWARE Use software mixing instead of hardware. *
 MUS.LOOPING Looping flag initially set.
 (* MOD only)

 Definition Loads music, from a file into the desired slot.

Comments Loads .MOD/.IT/.MO3/.XM/.MTM/.S3M/.MP3/.OGG files only. FileName can be a

maximum of 64 characters in length.

DS4QB.MusicFadeIn

Prototype DECLARE SUB DS4QB.MusicFadeIn (FStep AS INTEGER, Slot AS INTEGER,

ObjVol AS INTEGER, CPos AS INTEGER)

Parameters FStep – Amount of volume increased per a timed cycle (300ms).

 DEFAULT Use the default setting. (5)
 Integer 1 – 50 (must be a multiple of the objective volume).

 Slot – Music slot to be faded in.

 Integer 1 – 512 Music slot.

 ObjVol – Object volume, fade in will be complete when this volume has been

reached.

 DEFAULT Use the default setting. (50)
 Integer 1 – 100 Volume to be achieved.

 CPos – Pointer to variable for keeping track of the fade-in process.

 Integer variable. (reference to)

 38

Definition Starts playing, and fades in a musical piece.

Comments For a complete tutorial on this routine, see Advanced Topics # Music:Advanced

Topics # Fading and fade-switching.

DS4QB.MusicFadeOut

Prototype DECLARE SUB DS4QB.MusicFadeOut (FStep AS INTEGER, Slot AS INTEGER,

ObjVol AS INTEGER, CPos AS INTEGER)

Parameters FStep – Amount of volume decreased per a timed cycle (300ms).

 DEFAULT Use the default setting. (5)
 Integer 1 – 50 (must be a multiple of the starting volume).

 Slot – Music slot to be faded out.

 Integer 1 – 512 Music slot.

 ObjVol – Starting volume of music you are fading out.

 DEFAULT Use the default setting. (50)
 Integer 1 – 100 Starting volume.

 CPos – Pointer to variable for keeping track of the fade-out process.
 Integer variable. (reference to)

Definition Fades out a musical piece, and eventually stops it.

Comments For a complete tutorial on this routine, see Advanced Topics # Music: Advanced

Topics # Fading and fade-switching.

DS4QB.MusicFadeSwitch

Prototype DECLARE SUB DS4QB.MusicFadeSwitch (FStep AS INTEGER, StartSlot AS

INTEGER, ObjVol AS INTEGER, EndSlot AS INTEGER, CPos AS INTEGER)

Parameters FStep – Amount of volume decreased/increased per a timed cycle (300ms).

 DEFAULT Use the default setting. (5)
 Integer 1 – 50 (must be a multiple of the start/objective volume).

 StartSlot – Music slot to be faded out.

 Integer 1 – 512 Music slot.

 39

 ObjVol – Volume the music that is being faded out starts at, and volume that the

music that is being faded in will finish at.

 DEFAULT Use the default setting. (50)
 Integer 1 – 100 Volume level.

 EndSlot – Music slot to be faded in.

 Integer 1 – 512 Music slot.

 CPos – Pointer to variable for keeping track of the fade-out process.

 Integer variable. (reference to)

Definition Fades out a musical piece (eventually stopping it), playing and fading in another one.

Comments For a complete tutorial on this routine, see Advanced Topics # Music: Advanced

Topics # Fading and fade-switching.

DS4QB.PauseMusic

Prototype DECLARE SUB DS4QB.PauseMusic (Slot AS INTEGER)

Parameters Slot – Music slot you wish to pause.

 Integer 1 – 512 Music slot.
 CDMUSIC CD Audio handle.

Definition Pauses a music slot.

Comments This will do nothing if no sound is playing in this slot.

DS4QB.PlayMusic

Prototype DECLARE SUB DS4QB.PlayMusic (Slot AS INTEGER)

Parameters Slot – Music slot you wish to play.

 Integer 1 – 512 Music slot.

Definition Plays a music slot.

Comments Will do nothing if no music is loaded in this slot.

 40

DS4QB.ResumeMusic

Prototype DECLARE SUB DS4QB.ResumeMusic (Slot AS INTEGER)

Parameters Slot – Music slot you wish to resume from paused status.

 Integer 1 – 512 Music slot.
 CDMUSIC CD Audio handle.

Definition Resumes a paused music slot.

Comments Will do nothing if no music is paused in this slot.

DS4QB.SetMusicAttr

Prototype DECLARE SUB DS4QB.SetMusicAttr (Slot AS INTEGER, Volume AS INTEGER,

Pan AS INTEGER)

Parameters Slot – Music slot you wish to set these attributes on.

 Integer 1 – 512 Music slot.
 CDMUSIC CD Audio handle.

 Volume – Volume level to set as current.

 CURRENT Use current setting.
 DEFAULT Use the default setting. (50)
 Integer 0 – 100 Volume level.

 Pan – Pan separation to set as current.

 CURRENT Use current setting.
 DEFAULT Use the default setting. (50)
 Integer 1 – 100 Pan separation.

Definition Sets a music slot's CURRENT attributes.

Comments Will do nothing if no music has been loaded.

DS4QB.SetMusicPosition

Prototype DECLARE SUB DS4QB.SetMusicPosition (Slot AS INTEGER, Position AS

LONG)

 41

Parameters Slot – Music slot you wish to set the position.

 Integer 1 – 512 Music slot.
 CDMUSIC CD Audio handle.

 Position – Position you wish the music slot to jump to/play from.

 Combine&(Order, Row) Use for MOD type music.
 Long Integer 0-? Use for Mp3 type music.

Definition Sets a music slot's play position.

Comments For a more in-depth tutorial, see: Advanced topics # Music: Advanced topics #

Positions.

DS4QB.StopMusic

Prototype DECLARE SUB DS4QB.StopMusic (Slot AS INTEGER)

Parameters Slot – Music slot you wish to stop from playing.

 Integer 1 – 512 Music slot.
 CDMUSIC CD Audio handle.

Definition Stops a playing music slot.

Comments Will do nothing if no music is playing in this slot.

DS4QB.GetMusicLength& (Function)

Prototype DECLARE FUNCTION DS4QB.GetMusicLength& (Slot AS INTEGER)

Parameters Slot – Music slot you wish to get the length from.

 Integer 1 – 512 Music slot.

Purpose Retrieves a music slot's length.

Returns Music's length. Length will be in bytes for Mp3 type music, and in order/row for

MOD type. (use GetOrder& and GetRow&)

Comments For a more in-depth tutorial, see: Advanced topics # Music: Advanced topics #

Positions.

 42

DS4QB.GetMusicPosition& (Function)

Prototype DECLARE FUNCTION DS4QB.GetMusicPosition& (Slot AS INTEGER)

Parameters Slot – Music slot you wish to get the position from.

 Integer 1 – 512 Music slot.
 CDMUSIC CD Audio handle.

Purpose Retrieves a music slot's current play position.

Returns Music's current play position. Position will be in bytes for Mp3 type music, seconds

for CD Audio, and in order/row for MOD type. (use GetOrder& and GetRow&)

Comments For a more in-depth tutorial, see: Advanced topics # Music: Advanced topics #

Positions.

Combine& (Function)

Prototype DECLARE FUNCTION Combine& (Order AS LONG, Row AS LONG)

Parameters Order – Order you wish to combine.

 Long Integer 0 – ? Order.

 Row – Row you wish to combine.

 Long Integer 0 – ? Row.

Purpose Combines an order and row into one number, used with DS4QB.SetMusicPostion

(for MOD type music).

Returns A long integer containing the combined order/row.

Comments For a more in-depth tutorial, see: Advanced topics # Music: Advanced topics #

Positions.

GetOrder& (Function)

Prototype DECLARE FUNCTION GetOrder& (Whole AS LONG)

Parameters Whole – Whole you wish to retrieve the order from.

 Long Integer 0 – ? Whole.

 43

Purpose Retrieves the order from a whole, the whole is returned from

DS4QB.GetMusicLength& and DS4QB.GetMusicPosition& (for MOD type
music).

Returns A long integer containing the order.

Comments For a more in-depth tutorial, see: Advanced topics # Music: Advanced topics #

Positions.

GetRow& (Function)

Prototype DECLARE FUNCTION GetRow& (Whole AS LONG)

Parameters Whole – Whole you wish to retrieve the row from.

 Long Integer 0 – ? Whole.

Purpose Retrieves the row from a whole, the whole is returned from

DS4QB.GetMusicLength& and DS4QB.GetMusicPosition& (for MOD type
music).

Returns A long integer containing the row.

Comments For a more in-depth tutorial, see: Advanced topics # Music: Advanced topics #

Positions.

CD Audio Functions

DS4QB.InitCD

Prototype DECLARE SUB DS4QB.InitCD ()

Parameters None.

Definition Initializes the CD drive.

Comments If there is no CD in the drive, or any other errors, DS4QB++ (and your program) will

continue running.

 44

DS4QB.DeinitCD

Prototype DECLARE SUB DS4QB.DeinitCD ()

Parameters None.

Definition Deinitializes the CD drive.

Comments If there is no CD in the drive, or any other errors, DS4QB++ (and your program) will

continue running.

DS4QB.PlayCD

Prototype DECLARE FUNCTION DS4QB.PlayCD (Track AS INTEGER, Looping AS INTEGER)

Parameters Track – The track number of the song on the CD in which to play.

 Integer 1 – ? Track.

 Looping – Whether or not the song will repeat after it is played.

 ACTIVE Turn looping on.
 DEACTIVE Turn looping off.

Definition Plays the specified audio track on the CD.

Comments If there is no CD in the drive, or any other errors, DS4QB++ (and your program) will

continue running.

DS4QB.GetCDTracks (Function)

Prototype DECLARE FUNCTION DS4QB.GetCDTracks ()

Parameters None.

Purpose Retrieves the number of tracks on the current CD.

Returns An integer 1 or greater containing the track number. Less than 1 if there is no CD in

the drive or no audio tracks on the CD.

Comments If there is no CD in the drive, or any other errors, DS4QB++ (and your program) will

continue running.

 45

DS4QB.GetCDTrackLength& (Function)

Prototype DECLARE FUNCTION DS4QB.GetCDTrackLength& (Track)

Parameters Track – The track number of the song on the CD in which to play.

 Integer 1 – (number of tracks) Track.

Purpose Retrieves the track length (in seconds).

Returns An integer containing the track length.

Comments If there is no CD in the drive, or any other errors, DS4QB++ (and your program) will

continue running.

Generic 2D Functions

DS4QB.Set2DPosition

Prototype DECLARE SUB DS4QB.Set2DPosition (PosX AS INTEGER, PosY AS INTEGER,

Angle AS INTEGER)

Parameters PosX, PosY – Location of the ear.

 Integer ? – ? Sound position.
 CURRENT CURRENT values.

 Angle – Angle in which the ear is facing.

 Integer 0 – 359 Sound orientation.
 CURRENT CURRENT value.

Definition Sets the CURRENT position/orientation of the ear.

Comments Will only have effect sounds played with the 2D sound routines.

DS4QB.Set2DDistFactor

Prototype DECLARE SUB DS4QB.Set2DDistFactor (DistF AS SINGLE)

 46

Parameters DistF – Distance factor.

 Single Precision ? – ? Distance factor.
 DEFAULT Use the DEFAULT setting. (64.0)

Definition Sets the distance factor to be used when calculating the final volume of all sounds

played with the 2D audio routines.

Comments For a more in-depth tutorial, see Advanced Topics # Sound: Advanced Topics # 2D

Audio.

Other Functions

RawExtract

Prototype DECLARE SUB RawExtract (RawFile AS STRING, FileIndex AS INTEGER,

ExtFile AS STRING)

Parameters RawFile – File name of the RAW file.

 String ? – ? File name.

 FileIndex – The index of the file within the RAW file you wish to retrieve.

 Integer 1 – ? File index.

 ExtFile – Name of the file to extract from the RAW file.

 String ? – ? Extract file name.

Definition Extracts a file from a RAW file.

Comments Use this routine with RAW files created by the RAWMAKE utility.

 47

Closing words

Contact information
I can be reached through the following methods:

!"ICQ: 58401399
!"EMail: lithium@zext.net
!"Web: http://lithium.zext.net (post on the message board)

Please contact me if you have any comments, suggestions, bug reports, etc.

Note Please do not complain to me about "lag", as I already know it exists, and am
working on correcting it. (Although you shouldn't get much lag, as I have done a lot
of work on it.)

Credits
I would like to thank the following people who have made this possible. (I couldn't
have done it without you!)

!"Ian Luck: BASS.DLL

!"Microsoft: DirectSound, MSVC, QuickBasic

!"Plasma357: Made .DOC (Word) .PDF and .HTML versions of this document!

!"CGI-Joe, Beta testing/ideas

DJLauncy,

DigitlDud,

logiclrd,

Sane:

!"God: I’m here, aren’t I?

Future Plans
At the moment, I'm not sure… I may or may not go any further with DS4QB++ –To
tell you the truth, when I started this project I had no idea it would go this far :] … If
there is a major bug to be fixed, or a lot of people really want something
added/changed drastically, there may be a DS4QB++ v1.3, otherwise not.

http://wwp.mirabilis.com/scripts/Search.dll?to=58401399
mailto:lithium@zext.net
http://lithium.zext.net/

 48

Appendices

Constants

Note Combining flags can be done with the OR operand. Say you wanted to have a
sound that uses 8-bit, mono, and software mixing. You would enter this for the sound
flags:

SND.8BIT OR SND.MONO OR SND.SOFTWARE

Init flags
Flag Purpose

INIT.8BIT Use 8-bit instead of 16-bit.
INIT.MONO Use mono instead of stereo.
INIT.3DENABLE (Reserved for future use.)
INIT.OGGENABLE Enable OGG Vorbis support.

Sound flags
Flag Purpose

SND.8BIT Use 8-bit instead of 16-bit.
SND.MONO Use mono instead of stereo.
SND.LOOPING Sound will loop.
SND.3DENABLE (Reserved for future use.)
SND.SOFTWARE Use software mixing, not hardware.

Music flags
Flag Purpose

MUS.RAMP Use normal ramping.
MUS.RAMPS Use sensitive ramping.
MUS.FT2MOD Play MOD as FastTracker 2 would.
MUS.PT1MOD Play MOD as ProTracker 1 would.
MUS.LOOPING Music will loop.
MUS.MONO Use mono instead of stereo.
MUS.SURROUND Enable surround sound capabilities.
MUS.SURROUND2 Use surround sound mode 2.
MUS.3DENABLE (Reserved for future use.)
MP3.USEMEM Load MP3 into memory.
MP3.LOWQUALITY Play MP3 in low quality.

 49

Constants
Flag Value

HIGHQUALITY 44,100 Hz
MEDIUMQUALITY 22,050 Hz
LOWQUALITY 11,025 Hz
ACTIVE 1
DEACTIVE 0
WIN9X 1
WINNT 0
NULL 0
CDMUSIC CD Audio handle, can only be used with some routines.

DEFAULT values
Routine Attribute Value

DS4QB.SetGlobalVolumes SoundVol 50
DS4QB.SetGlobalVolumes MusicVol 50
DS4QB.SetMasterVolume Volume 50
DS4QB.Init SoundQuality MEDIUMQUALITY
DS4QB.Init Flags NULL
DS4QB.LoadSound Flags NULL
DS4QB.PlaySoundEx Freq Original value
DS4QB.PlaySoundEx Volume 50
DS4QB.PlaySoundEx Pan 0
DS4QB.PlaySoundEx Looping DEACTIVE
DS4QB.PlaySound2DEx Freq Original value
DS4QB.PlaySound2DEx Volume 50
DS4QB.SetSoundAttr Freq Original value
DS4QB.SetSoundAttr Volume 50
DS4QB.SetSoundAttr Pan 0
DS4QB.SetSoundAttr Looping DEACTIVE
DS4QB.SetSoundAttr Flags NULL
DS4QB.AddSound Freq Original value
DS4QB.AddSound Volume 50
DS4QB.AddSound Pan 0
DS4QB.AddSound Looping DEACTIVE
DS4QB.Add2DSound Freq Original value
DS4QB.Add2DSound Volume 50
DS4QB.LoadMusic Flags MUS.LOOPING
DS4QB.MusicFadeIn FStep 5
DS4QB.MusicFadeIn ObjVol 50
DS4QB.MusicFadeOut FStep 5
DS4QB.MusicFadeOut ObjVol 50

(continued on next page)

 50

(continued from previous page)

DS4QB.MusicFadeSwitch FStep 5
DS4QB.MusicFadeSwitch ObjVol 50
DS4QB.SetMusicAttr Volume 50
DS4QB.SetMusicAttr Pan 50
DS4QB.Set2DDistFactor DistF 64.0

	Table of Contents
	1. Introduction
	Legal Stuff
	What is DS4QB++?
	Minimum System Requirements
	Version Updates

	2. Getting Started
	How does DS4QB++ work?
	DS4QB++ Architecture
	Communication System
	What sound/music formats does DS4QB++ support?

	Adding DS4QB++ to your project
	Adding DS4QB++ to your program
	Customizing DS4QB++ for your program

	Starting up and shutting down DS4QB++
	Init and Deinit
	Global Volumes

	Sound Engine: Basics
	Loading Sounds
	Playing, Stopping, etc.

	Music Engine: Basics
	Loading Music
	Playing, Stopping, etc.

	3. Advanced Topics
	Sound Engine: Advanced Topics
	Frequency, Panning, Volume, etc.
	Sound Buffers
	2D Audio

	Music Engine: Advanced Topics
	Pan Separation and Volume
	Fading and Fade-Switching
	Positions

	Modifying and Compiling DS4QB++
	What do I need?
	Modifying and compiling the slave module

	4. Individual Function Explanations
	Base Functions
	DS4QB.Close
	DS4QB.SetGlobalVolumes
	DS4QB.SetMusic
	DS4QB.SetSound
	DS4QB.SetMasterVolume
	DS4QB.GetOS% (Function)
	DS4QB.Init% (Function)

	Sound Functions
	DS4QB.DeleteSound
	DS4QB.LoadSound
	DS4QB.PlaySound2D
	DS4QB.PlaySound2DEx
	DS4QB.PlaySound
	DS4QB.PlaySoundEx
	DS4QB.SetSoundAttr
	DS4QB.StopSound
	DS4QB.AddSound
	DS4QB.Add2DSound
	DS4QB.PlaySounds
	DS4QB.Play2DSounds

	Music Functions
	DS4QB.DeleteMusic
	DS4QB.LoadMusic
	DS4QB.MusicFadeIn
	DS4QB.MusicFadeOut
	DS4QB.MusicFadeSwitch
	DS4QB.PauseMusic
	DS4QB.PlayMusic
	DS4QB.ResumeMusic
	DS4QB.SetMusicAttr
	DS4QB.SetMusicPosition
	DS4QB.StopMusic
	DS4QB.GetMusicLength& (Function)
	DS4QB.GetMusicPosition& (Function)
	Combine& (Function)
	GetOrder& (Function)
	GetRow& (Function)

	CD Audio Functions
	DS4QB.InitCD
	DS4QB.DeinitCD
	DS4QB.PlayCD
	DS4QB.GetCDTracks (Function)
	DS4QB.GetCDTrackLength& (Function)

	Generic 2D Functions
	DS4QB.Set2DPosition
	DS4QB.Set2DDistFactor

	Other Functions
	RawExtract

	Closing words
	Contact information
	Credits
	Future Plans

	Appendices
	Constants
	Init flags
	Sound flags
	Music flags
	Constants
	DEFAULT values

